Volume Fill Utility¶
The volume fill utility is a command line program that can read in stl files that define geometry, then compute various fluid fill operations. The program works using a voxelization and flood fill technique. This makes the program robust with any given input STL files, but also makes the resulting accuracy sensitive to the resolution used (-n
argument). The program has various functions to compute volume data given a geometry. This same utility is called from the GUI when invoking the Tools->Volume Calculator function.
Compute Modes¶
The available fill compute modes are:
Volume/height search - use the
--volume X
argument to search for a given volume by varying the height through a bisection search algorithmFull volume compute - use the
--full
argument to compute the full volumeCurve - use the
--curve
argument to compute the volume vs fluid height curve data
Inputs¶
All input units are assumed to be in meters. This means your stl files must be defined using meters and any other inputs such as seed point must be in meters.
The program needs a few basic inputs in order to run:
Function to run :
--volume
,--full
,--curve
Resolution:
-n
- This resolution is used to create a uniform background mesh that is used for voxelization and flood fill algorithmsSeed Point:
-s
- The initial point which inside the geometry which is known to be wetFiles:
-f
- Use this multiple times to specify the STL files. Must be meter units.Up direction:
--up
- Specify which way is up
Multiple STL input files can be specified by using the -f
argument multiple times. For example,
fill --full -n 200 -f large.stl -f inner.stl --seed 0,0,0 --up yp
, would compute the full volume using the two defined stl files.
Output¶
The output is printed the standard output stream. You can also specify an option to output the results to a csv file (--out-csv
), or to an xml file (--out-xml
)
Usage¶
Run fill --help
to show the current usage information
Usage: fill [options] [input file]
Volume Fill options:
-h [ --help ] show help message
--volume arg Find the fluid height that gives the input
volume (L) using a bisection search method
--full Only computes full volume
--curve Compute volume fill curve between lowest and
highest wet points
-n [ --nx ] arg specify resolution in X direction
-s [ --seed ] arg (=center) specify the seed point -- "center" or
"0.1,0.1,0.2"
-f [ --file ] arg specify the input mesh STL file
--up arg (=yp) specify the up direction, one of: xn, yn, zn,
xp, yp, zp
--out-xml arg Specify an output file for the data in XML
format. If left empty no file is written
--out-csv arg Specify an output file for the curve data in CSV
format. If left empty no file is written
-N [ --max-iter ] arg (=100) specify number of iterations for volume search
Scripted Example¶
The python example below uses a sphere geometry for testing. You can download the input file here: sphere.stl
.
import subprocess
from xml.etree import ElementTree as ET
import os
import math
fillexe = r'C:/PATH TO MSTAR INSTALL/fill.exe'
# inputs
# this example uses a sphere geometry
radius = 1.0
fullvol = (4./3.) * math.pi * math.pow(radius, 3) * 1000.0
halfvol = fullvol * 0.5
xmlfn = 'vol.xml'
geofn = 'sphere.stl'
# run fill utility and get results
# search for a fill volume to obtain the required fill height
compl = subprocess.run([fillexe,
'-f', geofn,
'--volume', str(halfvol),
'-n', '300',
'-s', '0,0,0',
'--up', 'yp',
'--out-xml', xmlfn,
'--max-iter', '100' ], check=True)
tree = ET.parse(xmlfn)
root = tree.getroot()
finalResult = root.find("./VolumeSearch/FinalResult")
assert finalResult is not None, "Missing final result"
resultheight = float(finalResult.get("Height"))
resultvolume = float(finalResult.get("Volume")) * 1000.0 # convert output from m^3 to L
# print results to screen
print (F"Finished search for volume {halfvol}. \n\tFound height {resultheight} [m]\n\tFound volume {resultvolume} [L]")
Example XML output from Fill utility in volume search mode
Note the output volumes are cubic meters.
<FillOutput VolumeUnits="m^3" LengthUnits="m">
<VolumeSearch FindVolume="2.0943951023931953">
<Iteration Number="0" TestHeight="1.0318185284304489" ResultVolume="2.1249517037037045" ResultVolumeError="0.03055660131050919"/>
<Iteration Number="1" TestHeight="1.0172198424731931" ResultVolume="2.0837232592592598" ResultVolumeError="-0.010671843133935432"/>
<Iteration Number="2" TestHeight="1.0209986628627752" ResultVolume="2.1043451851851858" ResultVolumeError="0.0099500827919904999"/>
<Iteration Number="3" TestHeight="1.0191753813774542" ResultVolume="2.0837232592592598" ResultVolumeError="-0.010671843133935432"/>
<Iteration Number="4" TestHeight="1.0201189292337625" ResultVolume="2.1043451851851858" ResultVolumeError="0.0099500827919904999"/>
<Iteration Number="5" TestHeight="1.0196636672314552" ResultVolume="2.0837232592592598" ResultVolumeError="-0.010671843133935432"/>
<Iteration Number="6" TestHeight="1.0198992652396583" ResultVolume="2.0837232592592598" ResultVolumeError="-0.010671843133935432"/>
<FinalResult Height="1.0198992652396583" Volume="2.0837232592592598" VolumeError="-0.010671843133935432"/>
</VolumeSearch>
</FillOutput>